БИОДОСТУПНОСТЬ РАЗНЫХ ИСТОЧНИКОВ МЕТИОНИНА ДЛЯ БРОЙЛЕРОВ

А. ЯПОНЦЕВ, Т. КЛИМЕНКО, компания «Эвоник»

Метионин представляет собой первую лимитирующую аминокислоту в рационах бройлеров. Его добавление является обязательным условием балансирования рационов для птицы по аминокислотному составу. В настоящее время на рынке кормовых добавок источники метионина представлены DL-метионином, жидким метионин гидроксианалогом и его кальциевой солью (МГА-Са).

В ходе ряда опытов было установлено, что относительная биологическая доступность МГА-Са по сравнению с DL-метионином составляет в среднем 65%. В связи с тем, что данных о биодоступности кальциевой соли аналога метионина в рационах бройлеров на протяжении всего цикла выращивания не так много, компания «Эвоник» совместно с Университетом Estadual de Maringá (Бразилия) провела два опыта на бройлерах кросса Cobb 500

Таблица 1. Состав и питательность комбикорма, %

Компонент

Опыт 1

Опыт 2

0,81 (0,79)

0.74

0,38

Компонент	(0-21 сут)	(22-42 сут)	
Кукуруза	60,3	63,7	
Соевый шрот (СП — 45%)	31,0	27,3	
Мясокостная мука	6,50	4,50	
Соевое масло	1,00 3,2		
Известняк	0,08	0,26	
Соль	0,37	0,30	
Премикс	0,40	0,40	
Биолиз [®]	0,24	0,25	
ТреАМИНО®	0,11	0,09	
Содержание питательных веществ¹			
КОЭ _п , ккал/кг	2,978	3,148	
Сырой протеин	22,9 (23,3)	20,1 (19,8)	
SID лизин	1,15	1,02	
SID мет+цис	0,58	0,52	
SID треонин	0,78	0,69	
SID валин	0,91	0,81	
Общий лизин	1,30 (1,30)	1,14 (1,15)	
Общий мет+цис	0,68 (0,67)	0,62 (0,62)	
Общий треонин	0,93 (0,89)	0,81 (0,79)	
Общий валин	1,05 (1,04)	0,93 (0,92)	

¹В скобках приведены проанализированные значения.

0,93 (0,90)

0,88

0,45

Общий изолейцин

Доступный фосфор

Кальций

в стартовый (от 0 до 21 дня) и финишный (от 22 до 42 дней) периоды выращивания. В стартовый период использовали 1848 цыплят, в финишный — 1694. Всего было сформировано 11 групп цыплят, в каждой из которых было семь подгрупп по 24 или 22 головы. Рационы птицы опытных групп удовлетворяли ее потребность во всех питательных веществах в соответствии с рекомендациями Rostagno и соавт. (2011), за исключением SID мет+цис (табл. 1). Одна из 11 групп была контрольной, рацион ее был дефицитен по SID мет+цис. Бройлеры пяти групп получали комбикорм, где в качестве источника метионина использовался DL-метионин, птица других пяти групп — корм с MГА-Ca. В опыте 1 уровень ввода МГА-Са варьировал от 0,114 до 0,570%, в опыте 2 — от 0,095 до 0,476%. DL-метионин добавляли в корм в количестве 65% от уровня МГА-Са (табл. 2). Результаты лабораторных анализов подтвердили соответствие питательности рационов заявленным спецификациям и точность ввода источников метионина.

В опыте 2 птица получала комбикорм с теми же компонентами, что и в опыте 1. Доступ к нему и воде был

Таблица 2. Схема скармливания комбикорма

Группа	Источник метионина	Уровень ввода источника метионина, %		
		Опыт 1	Опыт 2	
1	Контрольный рацион	_	_	
2	DL-мет	0,074	0,062	
3	DL-мет	0,148	0,124	
4	DL-мет	0,222	0,186	
5	DL-мет	0,296	0,248	
6	DL-мет	0,370	0,310	
7	МГА-Са	0,114	0,095	
8	МГА-Са	0,228	0,190	
9	МГА-Са	0,342	0,286	
10	МГА-Са	0,456	0,381	
11	МГА-Са	0,570	0,476	

ad libitum в обоих опытах. Показатели продуктивности птицы обрабатывались с помощью нелинейного регрессионного анализа с применением процедуры NLIN (PROC NLIN) SAS 9.2. Использовалось следующее уравнение:

$$y = a + b (1 - e^{-(c1 \cdot x1 + c2 \cdot x2)}),$$

где у — показатель продуктивности;

- а показатель продуктивности, полученный при скармливании контрольного рациона;
- b общее повышение продуктивности (ответ) выше
 «а» до максимального ответа (асимптота);
- c1 коэффициент наклона кривой DL-мет;
- с2 коэффициент наклона кривой МГА-Са;
- х1 уровень DL-мет в рационе;
- х2 уровень МГА-Са в рационе.

Значение биодоступности было получено путем деления коэффициента наклона кривой МГА-Са (c2) на коэффициент наклона кривой DL-мет (c1).

Опыт 1 (0—21 день). При добавлении в комбикорм любого из источников метионина у цыплят-бройлеров отмечалось достоверное увеличение прироста живой массы, потребления корма и улучшение его конверсии (P < 0,001) по сравнению с контрольной группой (табл. 3).

Таблица 3. Показатели продуктивности цыплят-бройлеров в опыте 1 (0—21 день)¹

Группа	Источник метионина	Ввод, %	Потребление корма, г	Прирост живой массы, г	Конверсия корма
1	Контрольный рацион	_	1099	676	1,629
2	DL-мет	0,074	1260	858	1,468
3	DL-мет	0,148	1244	883	1,410
4	DL-мет	0,222	1277	907	1,408
5	DL-мет	0,296	1274	906	1,407
6	DL-мет	0,370	1281	904	1,416
7	МГА-Са	0,114	1258	854	1,474
8	МГА-Са	0,228	1278	897	1,424
9	МГА-Са	0,342	1274	907	1,405
10	МГА-Са	0,456	1286	901	1,428
11	МГА-Са	0,570	1276	891	1,432
Стандартная ошибка среднего арифметического		17,79	12,37	0,01	
		Р-значения			
Контрольный рацион в сравнении с рационом, обогащенным метионином		0,0001	0,0001	0,0001	
DL-мет в сравнении с МГА-Са		0,49	0,83	0,26	

¹ Средние значения для семи подгрупп (по 24 гол. в каждой).

Замена 100 частей МГА-Са на 65 частей DL-метионина не оказала достоверного влияния на потребление корма (P=0,49), прирост живой массы (P=0,83) и конверсию корма (P=0,26) ни в одной из опытных групп. Результаты мультиэкспоненциального регрессионного анализа показали, что значение биодоступности МГА-Са по сравнению с DL-метионином составляет 66 и 58% для прироста живой масса и конверсии корма соответственно (рис. 1 и 2).

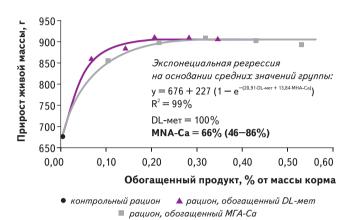


Рис. 1. Биодоступность для прироста живой массы — опыт 1

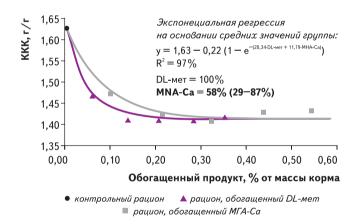


Рис. 2. Биодоступность для конверсии корма — опыт 1

Опыт 2 (22—42 дня). В этом опыте, как и в первом, добавление в рацион любого из источников метионина привело к достоверному повышению прироста живой массы, потребления корма и улучшению конверсии (P < 0,001) по сравнению с контрольной группой (табл. 4). Замена 100 частей МГА-Са на 65 частей DL-метионина не оказала достоверного влияния на потребление корма (P = 0,65), прирост живой массы (P = 0,95) и конверсию корма (P = 0,65). Результаты мультиэкспоненциального регрессионного анализа показали, что биодоступность МГА-Са по сравнению с DL-метионином составляет 65 и 61% для прироста живой массы и конверсии корма соответственно (рис. 3 и 4).

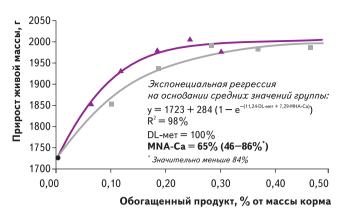
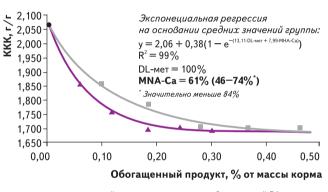

Таким образом, результаты обоих опытов свидетельствуют о том, что замена 100 частей МГА-Са на 65 частей

Таблица 4. Показатели продуктивности цыплят-бройлеров в опыте 2 (22—42 дня)¹

Группа	Источник метионина	Уровень ввода, %	Потребление корма, г	Прирост живой массы, г	Конверсия корма
1	Контрольный рацион	_	3557	1729	2,058
2	DL-мет	0,062	3443	1858	1,856
3	DL-мет	0,124	3408	1935	1,761
4	DL-мет	0,186	3356	1980	1,695
5	DL-мет	0,248	3419	2007	1,703
6	DL-мет	0,310	3354	1982	1,693
7	МГА-Са	0,095	3439	1855	1,855
8	МГА-Са	0,190	3445	1937	1,780
9	МГА-Са	0,286	3395	1992	1,705
10	МГА-Са	0,381	3375	1985	1,700
11	МГА-Са	0,476	3388	1988	1,704
Стандартная ошибка среднего арифметического		44,02	23,07	0,02	
		Р-значения			
Контрольный рацион в сравнении с рационом, обогащенным метионином		0,0001	0,0001	0,0001	
DL-мет в сравнении с МНА-Са		0,65	0,95	0,63	


¹ Средние значения для семи подгрупп (по 22 гол. в каждой).

DL-метионина позволяет получить одинаковые показатели продуктивности бройлеров. Кроме того, результаты мультиэкспоненциального регрессионного анализа для показателей прироста живой массы и конверсии корма указывают на то, что относительная биодоступность МГА-Са составляет в среднем 62 и 63% для бройлеров на стартовом (0—21 день) и финишном (22—42 дня) рационах, что намного ниже значения, заявляемого производителем МГА-Са (84%). Таким образом, биодоступность МГА-Са

• контрольный рацион
 ▲ рацион, обогащенный DL-мет
 ■ рацион, обогащенный МГА-Са

Рис. 3. Биодоступность для прироста живой массы — опыт 2

◆ контрольный рацион
 ▲ рацион, обогащенный DL-мет
 ■ рацион, обогащенный MГА-Са

Рис. 4. Биодоступность для конверсии корма — опыт 2

в рационах для бройлеров не превышает 65% при сравнении по весу продуктов, вне зависимости от фазы кормления.

Список литературы можно запросить в редакции или у автора

информация

Власти ЕС обяжут фермеров сократить использование кормовых добавок с содержанием меди в комбикормах для свиней. Рассмотрев все предложения, Еврокомиссия установила новые допустимые уровни меди: 150 мг/кг корма в первые четыре недели после отъема, 100 мг/кг в первые восемь недель после отъема и 25 мг/кг в последующее время.

Решение регулятора в отрасли охарактеризовали как «разумный

компромисс», поскольку допустимые пределы включения меди остались на достаточно высоком уровне в критические периоды жизни животных. Новые стандарты были поддержаны крупнейшими животноводческими и комбикормовыми организациями ЕС, в том числе FEFAC.

По материалам Feed Navigator В рамках серии исследований, проведенных учеными из ЕС, были разработаны стратегии кормления мелкого рогатого скота, в частности овец, позволяющие сохранять их продуктивность при замене в рационе дорогостоящего соевого шрота на подсолнечную муку и горох, даже несмотря на то, что концентрация протеина в комбикормах в этом случае несколько снижается. Подсолнечная мука содержит 31—37% протеина, который разлагается в рубце на 80%, горох — 24% и на 84%.

По материалам All About Feed