УДК 636.5.033.14

ЖИРЫ РАЗНОГО ПРОИСХОЖДЕНИЯ В КОМБИКОРМАХ ДЛЯ ЦЫПЛЯТ-БРОЙЛЕРОВ

И. ЕГОРОВ, д-р биол. наук, **Т. ЕГОРОВА**, канд. с.-х. наук, ВНИТИП **М. ПОПОВА**, **С. САВЧУК**, компания «Сария Био-Индастрис Волга»

Авторами предлагается вводить в комбикорма для бройлеров животный и птичий жиры, подсолнечное масло — концентрированные источники энергии, содержащие жирорастворимые витамины, которые обеспечивают организм незаменимыми жирными кислотами.

Ключевые слова: жиры, жирные кислоты, зоотехнические показатели бройлеров, среднесуточные приросты, переваримость и использование питательных веществ.

Authors offer to include the animal fat, poultry fat and sunflower oil in compound feeds of broilers which are the concentrated power sources, containing fat-soluble vitamin and, provide an organism with irreplaceable fatty acids.

Keywords: fats, fatty acids, zootechnical indicators of broilers, average daily increase in weight, digestibility and use of nutrients.

Структура рационов бройлеров в России основана на пшенице и ячмене (а не на кукурузе, как в США или Бразилии). И без высоких уровней ввода кормовых жиров они дефицитны по энергии. Вместе с тем комбикорма для бройлеров характеризуются высокой калорийностью. Известно, что большие дозировки протеина, не подкрепленные энергией, приводят к отрицательному эффекту — снижению использования протеина, наиболее дорогого компонента рациона, так как часть его расходуется для восполнения потребности организма в энергии. Для улучшения использования протеина необходимо повысить энергетическую составляющую рациона посредством ввода высококалорийных компонентов, какими являются кормовые жиры и растительные масла.

По последним литературным данным, сбалансированность жирнокислотного питания напрямую влияет на воспроизводство племенной птицы, становление иммунитета бройлеров и качество их мяса. Наиболее сбалансированными являются рационы с включением как растительных, так и животных жиров в соотношении 1:1 за счет их синергизма.

Интересы ученых в настоящее время направлены на поиск путей удовлетворения потребности птицы в белке и энергии, как за счет увеличения производства и рационального использования традиционных кормов, так и за счет нетрадиционных кормов и кормовых добавок.

Продуктивное и метаболическое действие скармливаемых цыплятам-бройлерам жиров зависит от их вида, количества, качества, содержания в рационе энергии, протеина, витаминов и минеральных веществ, фона вы-

ращивания, породы, пола. Несмотря на то что указанные факторы существенно влияют на интенсивность роста цыплят-бройлеров, оплату корма, пищевую и биологическую ценность получаемой продукции, их действие на показатели продуктивности недостаточно изучены.

Для цыплят раннего возраста имеются физиологические ограничения по вводу жиров из-за неспособности печени вырабатывать достаточно желчи для их омыления и стенок кишечника — секретировать достаточно липазы как основного фермента для этого типа субстрата. В связи с этим в ряде практических руководств по выращиванию бройлеров ввод жира в рацион в первые 10—14 дней их жизни ограничивается до 2,5—3%.

Исследования по возможности использования животных жиров и подсолнечного масла при рациональном их соотношении в комбикормах для цыплят-бройлеров современных кроссов актуальны и имеют большое народнохозяйственное значение.

Целью наших исследований стало изучение зоотехнических показателей цыплят-бройлеров при вводе в комбикорма подсолнечного масла, животного (кроме птичьего) жира и птичьего жира, произведенных ООО «Сария Био-Индастрис Волга».

В условиях вивария ФГУП «Загорское» ЭПХ ВНИТИП был проведен опыт на бройлерах кросса Кобб 500, которые содержались в клеточных батареях, по 35 голов в каждой группе, с суточного до 36-дневного возраста.

Нормы посадки, световой, температурный, влажностный режимы, фронт кормления и поения во все возраст-

Таблиц	a 1	Схема	опыта

	Особенности кормления			
Группа	Возраст птицы			
	5—14 дней	15—21 день	22-36 день	
Контрольная	ПК с 2% растительного масла	ПК с 3,5% растительного масла	ПК с 6% растительного масла	
1 опытная	ПК с 2% животного жира	ПК с 3,5% животного жира	ПК с 6% животного жира	
2 опытная	ПК с 2% птичьего жира	ПК с 3,5% птичьего жира	ПК с 6% птичьего жира	

Таблица 2. Содержание жирных кислот в различных жирах

Корм	Пальмитиновая С16:0	Пальмитолеиновая С16:1	Стеариновая С18:0	Олеиновая С18:1	Линолевая С18:2	Линоленовая С18:3	0Э, ккал/кг
Птичий жир	20,7	5,2	6,4	42,1	21,7	2,0	845
Животный жир	24,5	2,50	12,4	43,5	9,8	0,6	850
Подсолнечное масло	6,7	0,11	4,3	27,4	57,1	3,7	969

ные периоды соответствовали рекомендациям ВНИТИП и для всех групп были одинаковыми (Методические рекомендации по технологическому проектированию птицеводческих предприятий; Методика проведения научных и производственных исследований по кормлению сельскохозяйственной птицы).

Цыплят кормили полнорационными комбикормами (ПК) с питательностью, рассчитанной в соответствии с руководством по оптимизации рецептов комбикормов для сельскохозяйственной птицы [2]. Схема опыта представлена в таблице 1.

При потрошении тушки бройлеров с каждой головы в отходы попадает до 60 г внутреннего жира, что составляет 2,5-3,5% от живой массы цыпленка. В настоящее время налажена технология получения птичьего жира при переработке отходов при убое. Жирнокислотный состав жиров, используемых в опыте, приведен в таблице 2. Кислотное число животного и птичьего жиров составило 12 и 11 мгКОН/г, перекисное число — 0,2 и 0,1% J.

Результаты исследования (табл. 3) свидетельствуют, что применение подсолнечного масла, животного и птичьего

жиров обеспечило высокую сохранность цыплят во всех группах. Птица на протяжении всего периода выращивания хорошо потребляла комбикорма.

Цыплята 2 опытной группы, которые получали комбикорма с птичьим жиром, в возрасте 21 дня по живой массе превосходили контроль на 1,7%, в 36 дней — на 1,1%. Бройлеры 1 опытной (рацион с животным жиром) и контрольной групп в 21- и 36-дневном возрасте по этому показателю не различались. Среднесуточный прирост живой массы птицы в 1 и 2 опытных группах превышал контроль соответственно на 0,6 и 1,06%. Расход корма на 1 кг прироста живой массы был ниже в 1 и во 2 опытных группах на 0,58 и на 1,16% по сравнению с контролем.

Переваримость протеина, жира и использование азота у опытной птицы были выше, чем у бройлеров контрольной группы, соответственно на 1,32% (2 группа), на 0,3 и 1% (1 и 2 группы), на 0,4% (2 группа). При этом по доступности лизина и метионина бройлеры опытных групп превышали контрольную птицу на 0,65—1,8% и 1—1,77%. Использование кальция и фосфора во всех группах находилось на одном уровне. Основные показатели пере-

Таблица 3. Зоотехнические показатели

Days	Группа			
Показатель	контрольная	1 опытная	2 опытная	
Сохранность, %	100	100	100	
Живая масса, г, в возрасте				
суточном	48,1±0,37	47,1±0,41	50,2±0,38	
21 дня	763±5,19	758±5,44	777±4,42	
36 дней, в среднем	1921	1931	1943	
петушки	1984±17,69	1988±17,74	2004±13,78	
курочки	1858±16,53	1873±9,65	1883±12,39	
Расход корма на бройлера за весь период, г	3240,12	3240,31	3236,69	
Расход корма на 1 кг прироста живой массы, кг	1,73	1,72	1,71	
Среднесуточный прирост живой массы, г	52,03	52,33	52,58	

варимости и использования питательных веществ корма цыплятами-бройлерами представлены в таблице 4.

По химическому составу грудных мышц следует отметить, что содержание протеина у бройлеров, получавших комбикорма с птичьим жиром, было выше на 0,7%. У цыплят, в рацион которых вводили животный жир, этот показатель находился на уровне 22%. По содержанию золы не

Таблица 4. Переваримость и использование питательных веществ корма, %

Померения	Группа			
Показатель	контрольная	1 опытная	2 опытная	
Переваримость				
сухого вещества корма	77,90	78,80	79,90	
протеина	90,56	90,55	91,88	
жира	73,90	74, 20	74,90	
Использование				
азота	82,37	82,00	82,77	
кальция	62,00	62,01	62,12	
фосфора	52,12	52,09	52,22	
Доступность				
лизина	90,55	91,20	91,90	
метионина	89,10	90,10	90,87	

установлено какой-либо определенной закономерности между группами.

Согласно рекомендациям Института питания РАМН в жире мяса птицы должно содержаться около 18—20% незаменимых жирных кислот (линолевой, линоленовой и арахидоновой). В связи с этим важно изучить, как влияет скармливание цыплятам-бройлерам различных видов жиров на концентрацию незаменимых жирных кислот, соотношение ненасыщенных и насыщенных жирных кислот в тушках и мясе.

Содержание липидов и жирных кислот в мышечной ткани — один из основных критериев ее качества, причем большую ценность представляют внутримышечные жирные кислоты.

Химические и физические качества липидов связаны, прежде всего, со свойствами входящих в их состав жирных кислот, которые обладают в организме неодинаковыми функциями и оказывают на него различное влияние. Наряду с незаменимыми полиненасыщенными жирными кислотами в мышечной ткани немаловажное значение имеют состав и уровень насыщенных жирных кислот, играющих важную роль в обеспечении необходимого соотношения ненасыщенных и насыщенных соединений. В таблице 5 представлен жирнокислотный состав липидов грудной мышцы бройлеров.

В 36-дневном возрасте цыплята 1 опытной группы отличались от контрольных аналогов меньшим (на 5,98%) содержанием ненасыщенных и большим (на 4,98%) уровнем насыщенных жирных кислот в липидах грудных мышц. В основном это различие обусловлено более высоким уровнем линолевой кислоты в комбикормах контрольной группы за счет ввода в их состав подсолнечного масла. Соотношение ненасыщенных и насыщенных жирных кислот в липидах грудных мышц у цыплят контрольной группы

Таблица 5. Жирнокислотный состав липидов грудной мышцы, %

Померен	Группа			
Показатель	контрольная	1 опытная	2 опытная	
Сумма жирных кислот	100	100	100	
Насыщенные	32,20	37,18	33,14	
миристиновая	0,39	0,59	0,48	
пентадекановая	0,34	0,39	0,43	
пальмитиновая	30,50	34,82	31,24	
стеариновая	0,78	1,00	0,70	
арахиновая	0,19	0,38	0,29	
Мононенасыщенные	43,20	40,20	43,0	
миристолеиновая	0,60	0,37	0,50	
пальмитолеиновая	0,92	0,72	0,83	
олеиновая	41,68	39,11	41,67	
Полиненасыщенные	24,60	22,62	23,86	
линолевая	21,47	20,99	21,27	
линоленовая	0,62	0,30	0,50	
эйкозадиеновая	0,54	0,22	0,40	
арахидоновая	1,97	1,11	1,69	
Соотношение ненасыщенных и насыщенных кислот (x:1)	2,11	1,69	2,02	
Соотношение пальмитиновой и олеиновой кислот (x:1)	0,73	0,89	0,75	

составило 2,11:1; 1 опытной — 1,69:1; 2 опытной группы — 2,02:1. Наиболее высокое соотношение этих жирных кислот отмечено в контрольной группе, 2 опытная группа занимала промежуточное положение между контрольной и 1 опытной группами. Таким образом, жирнокислотный состав комбикормов оказывал влияние на состав липидов грудных мышц цыплят.

Потери при термической обработке мяса были самыми высокими (до 36,8%) в контрольной группе, бройлерам которой давали комбикорма с подсолнечным маслом [1]. Использование животного и птичьего жиров в комбикормах для цыплят-бройлеров снижает потери при жарении мяса, полученного от этой птицы, и обеспечивает высокие зоотехнические и экономические показатели.

Литература

- И. Егоров. Значение жиров в комбикормах для бройлеров / Егоров И., Топорков Н. // Комбикорма. — 2005. — № 1. — С. 60—62.
- Фисинин В.И. Руководство по оптимизации рецептов комбикормов для сельскохозяйственной птицы / Фисинин В.И., Егоров И.А., Егорова Т.В., Околелова Т.М. // Сергиев Посад, 2012. — С. 155. ■