КОМПЛЕКСНАЯ МИНЕРАЛЬНАЯ ДОБАВКА ДЛЯ КОРОВ

В. ЗОТЕЕВ, д-р биол. наук, Самарская ГСХА

Г. СИМОНОВ, д-р с.-х. наук, Северо-Западный НИИ молочного и лугопастбищного хозяйства

Известно, что переваримость питательных веществ кормов жвачными животными может быть повышена при использовании биологически активных веществ, не содержащихся в традиционных кормовых средствах. Они создают благоприятные условия для роста и развития микрофлоры в ЖКТ животных, в первую очередь в рубце, что и обусловливает повышение переваримости. К таким веществам относятся поверхностно-активные сорбенты, наиболее распространенными природными представителями которых являются цеолитовые туфы, в частности кремнеземистый мергель Майнского месторождения Ульяновской области.

Целью нашего исследования было определение эффективности использования кремнеземистого мергеля (майнит) в составе комплексной минеральной добавки (КМД) для лактирующих коров в пастбищный период. Научно-хозяйственный опыт проводили в ОПХ Поволжской МИС Самарской области на двух группах коров, по 10 голов в каждой. Основной рацион животных контрольной группы состоял из зеленой массы однолетних и многолетних культур и зерновой смеси; коровам опытной группы скармлива-

Таблица 1. Рецепт комплексной минеральной добавки

Компонент	Содержание, %	
Майнит	50	
Монокальцийфосфат	32,67	
Соль поваренная	17,17	
Медь сернокислая	0,00337	
Цинк сернокислый	0,1579	
Кобальт хлористый	0,0069	
Калий йодистый	0,00325	
В 1 кг содержатся		
Кальций, г	75	
Фосфор, г	56,8	
Соль поваренная, г	171,7	
Медь, мг	80	
Цинк, мг	360	
Кобальт, мг	17	
Йод, мг	25	

Таблица 2. Результаты опыта

Показатель —	Группа	
	контрольная	опытная
Валовой удой натурального молока, кг	1350	1335
Среднесуточный удой натурального молока, кг	18	17,8
Содержание жира в молоке, %	3,74	3,94
Содержание белка в молоке, %	3,1	3,19
Валовой удой молока 4%-ной жирности, кг	1262	1315
Среднесуточный удой молока 4%-ной жирности, кг	16,8	17,5
Валовой выход молочного жира, кг	50,5	52,6
Валовой выход молочного белка, кг	41,9	42,6
Затраты на 1 кг молока 4%-ной жирности		
обменной энергии, МДж	8,92	8,31
сырого протеина, г	114	108
концентрированных кормов, г	286	251

ли КМД в составе зерновой смеси из расчета 8% от ее массы.

Зачастую рационы коров с годовой продуктивностью 4 тыс. кг молока дефицитны, как показал анализ, по макро- и микроэлементам, в частности по натрию, кальцию, фосфору, цинку, меди, кобальту, йоду. В нашем опыте недостаток этих минеральных элементов в летнем рационе коров восполняли скармливанием им комплексной минеральной добавки, основным компонентом которой является цеолитовый туф Майнского месторождения.

При разработке рецепта КМД (табл. 1) мы учитывали нормы потребности коров с удоем 4 тыс. кг молока в год в макро- и микроэлементах, химический состав многолетней и однолетней злаково-бобовой смеси и фуражного зерна. Удельная масса объемистых кормов (травы) в рационах коров с такой продуктивностью должна быть не менее 65—70%.

Различий в потреблении объемистых кормов между коровами контрольной и опытной групп не отмечено. Животные опытной группы в среднем за сутки получили меньше на 0,4 кг концентрированных кормов по сравнению с контролем. Замена части зерна комплексной минеральной добавкой несколько снижала энергетическую питательность зерновой смеси — с 10,71 в контроле до 9,85 МДж в опытной группе. Однако скармливание коровам зерновой смеси без КМД (контрольная группа)

приводило к дефициту в рационе поваренной соли — на 8,1%, кальция — на 32, фосфора — на 65, меди — на 38, кобальта — на 61, йода — на 68%. Применение комплексной минеральной добавки практически восполнило этот дефицит, и содержание минеральных веществ в рационе опытной группы соответствовало детализированным нормам кормления лактирующих коров с продуктивностью 18 кг молока в сутки.

За основной период научнохозяйственного опыта, который продолжался 75 дней, у коров опытной группы по сравнению с контролем валовой удой натурального молока был ниже на 1,1% (табл. 2). Вместе с тем скармливание КМД животным опытной группы способствовало значительному увеличению (на 0,2 абс.%) жира в молоке. Среднесуточный удой молока 4%-ной жирности и выход молочного жира в среднем на корову в опытной группе были выше, чем в контроле, на 4,2%. Животные опытной группы по сравнению с контрольной расходовали на 1 кг молока 4%-ной жирности меньше: обменной энергии — на 6,8%, сырого протеина — на 5,6, концентрированных кормов — на 13.4%.

Таким образом, использование кремнеземистого мергеля Майнского месторождения в составе комплексной минеральной добавки в рационах коров повышает их молочную продуктивность.

комбикорма № 5 2011 75