БВМК С ЦЕОЛИТОВЫМ ТУФОМ В РАЦИОНЕ БЫЧКОВ

В. ЗОТЕЕВ, д-р биол. наук, Самарская ГСХА; **Г. СИМОНОВ**, д-р с.-х. наук, ГНУ Сахалинский НИИСХ Россельхозакадемии; **А. СИМОНОВ**, научно-исследовательский университет «Высшая школа экономики»

В последнее время все больше внимания ученых и практиков привлекают цеолитовые туфы. Они обладают свойством сорбентов и используются в кормлении сельскохозяйственных животных, особенно крупного рогатого скота, в небольших количествах в виде добавки к основному рациону. Согласно результатам исследований Кирилова М. (2005), Зотеева В. (2010), Симонова Г. (2010), Левахина В. (2012) и др., положительное влияние природных сорбентов на организм жвачных заключается в уменьшении токсического действия высокой концентра-

Таблица 1. Состав и питательность БВМК, %

Компонент	Группа		
	контрольная	опытная	
Отруби пшеничные	21,0	_	
Зерновая смесь	_	66,0	
Шрот соевый	65,0	_	
Карбамид	_	8,0	
Цеолитовый туф	_	12,0	
Трикальцийфосфат	6,0	6,0	
Соль поваренная	4,0	4,0	
Премикс П 63-2	4,0	4,0	
Питательность 1 кг БВМК			
Обменная энергия, МДж	8,6	8,5	
Сухое вещество, г	852,0	865,0	
Сырой протеин, г	275,0	285,0	
Сырой жир, г	32,6	15,0	
Сырая клетчатка, г	112,0	33,0	
Крахмал, г	18,2	33,0	
Сахар, г	44,0	4,0	
Макроэлементы, г			
кальций	13,0	14,0	
фосфор	18,0	17,7	
магний	4,2	1,5	
сера	2,5	2,2	
Микроэлементы, мг			
медь	13,5	12,8	
цинк	73,4	54,0	
марганец	32,5	8,9	
кобальт	8,2	8,2	
йод	3,8	3,3	
Витамин А, млн МЕ	42,4	42,4	
Витамин D, млн МЕ	7,2	7,2	

ции аммиака в содержимом рубца при повышенном поступлении небелковых азотистых веществ с кормами.

Один из таких природных сорбентов — цеолитовый туф Ягоднинского месторождения Камчатского края. По прогнозам, здесь его запасы доходят до 40 млн т. В состав цеолитовой руды этого месторождения входят: клиноптилолит в количестве 71%, морденит — 13,%, а также (в нисходящем порядке) кристобалит, кварц, слюда, глинистые минералы. Химический состав этого цеолита: $SiO_2 - 66,06-71,75$ мас.%; $TiO_2 - 0,23-0,45$; $AI_2O_3 - 11,38-13,99$; $Fe_2O_3 - 0,56-1,70$; MgO - 0,09-0,52; MnO - 0,06; CaO - 0,54-2,07; $Na_2O - 1,34-3,55$; $K_2O - 2,78-4,61$; $P_2O_5 - 0,01$; $H_2O - 3,70-13,57$ мас.%.

Цель наших исследований — изучить эффективность использования цеолитового туфа Ягоднинского месторождения в сочетании с карбамидом (мочевиной) в рационах бычков на заключительном этапе их откорма. Научно-хозяйственный опыт проводили в МТФ ОПХ «Сосновское» ГНУ Камчатский НИСХ в течение 120 дней в зимне-стойловый период. Бычков с начальной живой массой в среднем 350 кг распределили в две группы по 10 голов.

Для животных контрольной группы произвели белкововитаминно-минеральный концентрат (БВМК) на основе соевого шрота. В БВМК для опытной группы был введен цеолитовый туф в количестве 12% по массе с тем расчетом, чтобы в зерновой смеси его уровень составил 3% (карба-

Таблица 2. Зоотехнические показатели опыта

Показатель	Группа	
	контрольная	опытная
Живая масса, кг		
в начале опыта	350,1	351,0
в конце опыта	465,9	474,0
Прирост живой массы		
валовой, кг	115,8	122,5
среднесуточный, г	965	1021*
Затраты на 1 кг прироста		
обменной энергии, МДж	92,80	90,50
ЭКЕ	9,28	9,05
переваримого протеина, г	781	747

^{*}P<0.05.

Таблица 3. Результаты контрольного убоя бычков

Показатель	Группа		
	контрольная	опытная	
Масса, кг			
предубойная	466,0	475,0**	
парной туши	242,0	247,0*	
внутреннего жира	11,6	14,0*	
убойная	253,6	261,0*	
Убойный выход, %	54,0	55,0	

^{*}P≤0,05, **P≤0,01.

мида — 8%), а в комбикорме — 2%. Смесь отрубей, зерна, шрота, карбамида и цеолитового туфа использовали в БВМК в виде экструдата. Состав и питательность БВМК представлены в таблице 1.

На фоне основного рациона, состоящего из сена тимофеечного (1 кг), силоса горохово-овсяного (20 кг), турнепса (10 кг), бычки получали концентрированные корма в количестве 3 кг на голову в сутки, из которых 2,25 кг приходилось на зерновую смесь, 0,75 кг — на испытуемый БВМК. Рационы в основном соответствовали требованиям детализированных норм кормления для данной половоз-

растной группы и получения прироста 900—1000 г в сутки (Калашников А.П. и др., 2003).

Основной критерий полноценности кормления бычков на откорме — прирост живой массы (табл. 2). В опытной группе среднесуточный прирост живой массы животных, которым скармливали в составе рациона БВМК с цеолитовым туфом и карбамидом, повысился на 6% по сравнению с контролем, а затраты кормов на 1 кг прироста снизились на 8%.

При учете мясной продуктивности одним из важнейших показателей считается убойный выход, под которым понимается отношение массы туши с внутренним жиром к предубойной массе животного, выраженное в процентах. В обеих группах были отмечены высокие показатели мясной продуктивности (табл. 3). В опытной группе предубойная живая масса отобранных для контрольного убоя бычков привышала аналогичный показатель в контрольной группе на 1,02%, масса парной туши — на 1,02%, выход внутреннего жира-сырца — на 1,2%, выход убойной массы — на 1%.

Результаты опыта показали, что разработанный и апробированный нами рецепт БВМК с цеолитовым туфом Ягоднинского месторождения повышает среднесуточные приросты живой массы бычков на откорме и убойный выход туш животных.

обеспечение ПДК 4-6 мг/м³

СРО-С-055-26102009 (монтаж)

тел. (+916) 515-04-19

СРО-П-037-26102009 (проектирование)

уменьшение пылевых выбросов в 20-30 раз

E-mail: Zernoventservis@mail.ru

http://www.zernoventservis.ru

